Algae

 

 

 

Algae (pronounced /ˈældʒiː/; singular alga /ˈælɡə/, Latin for "seaweed") are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms. The largest and most complex marine forms are called seaweeds. They are photosynthetic, like plants, and "simple" because they lack the many distinct organs found in land plants. For that reason they are currently excluded from being considered plants.

 

Though the prokaryotic Cyanobacteria (commonly referred to as Blue-green Algae) were traditionally included as "Algae" in older textbooks, many modern sources regard this as outdated and restrict the term Algae to eukaryotic organisms.  All true algae therefore have a nucleus enclosed within a membrane and chloroplasts bound in one or more membranes.  Algae constitute a paraphyletic and polyphyletic group, as they do not include all the descendants of the last universal ancestor nor do they all descend from a common algal ancestor, although their chloroplasts seem to have a single origin.

Laurencia

Laurencia, a marine genus of Red Algae from Hawaii

 

Algae lack the various structures that characterize land plants, such as phyllids and rhizoids in nonvascular plants, or leaves, roots, and other organs that are found in tracheophytes. Many are photoautotrophic, although some groups contain members that are mixotrophic, deriving energy both from photosynthesis and uptake of organic carbon either by osmotrophy, myzotrophy, or phagotrophy. Some unicellular species rely entirely on external energy sources and have limited or no photosynthetic apparatus.

 

Nearly all algae have photosynthetic machinery ultimately derived from the Cyanobacteria, and so produce oxygen as a by-product of photosynthesis, unlike other photosynthetic bacteria such as purple and green sulfur bacteria. Fossilized filamentous algae from the Vindhya basin have been dating back to 1.6 to 1.7 billion years ago.

 

The first alga to have its genome sequenced was Cyanidioschyzon merolae.

 

Etymology and Study

the lineage of algae

The lineage of algae according to Thomas Cavalier-Smith.  The exact number and placement of endosymbiotic events is not yet clear, so this diagram can be taken only as a general guide.  It represents the most parsimonious way of explaining the three types of endosymbiotic origins of chloroplasts.  These types include the endosymbiotic events of cyanobacteria, red algae, and green algae, leading to the hypothesis of the super groups Archaeplastida, Chromalveolata, and Cabozoa respectively.  However, the monophyly of Cabozoa has been refuted and the monophylies of Archaeplastida and Chromalveolata are currently strongly challenged.  Endosymbiotic events are noted by dotted lines.

The singular alga is the Latin word for particular seaweed and retains that meaning in English.  The etymology is obscure. Although some speculate that it is related to Latin algēre, "be cold", there is no known reason to associate seaweed with temperature. A more likely source is alliga, "binding, and entwining."  Since Algae has become a biological classification, alga can also mean one classification under Algae, parallel to a fungus being a species of fungi, a plant being a species of plant, and so on.

 

The ancient Greek word for seaweed was φῦκος (fūkos or phykos), which could mean either the seaweed, probably Red Algae, or a red dye derived from it. The Latin, fūcus, meant primarily the cosmetic rouge. The etymology is uncertain, but a strong candidate has long been some word related to the Biblical פוך (pūk), "paint" (if not that word it), a cosmetic eye-shadow used by the ancient Egyptians and other inhabitants of the eastern Mediterranean. It could be any color: black, red, green, blue.

historia fucorum

Title page of Samuel Gottlieb Gmelin, Historia Fucorum, dated 1768

 

Accordingly the modern study of marine and freshwater algae is called either phycology or algology.  The name Fucus appears in a number of taxa.

 

Classification

scanning electron micrograph

False-color Scanning electron micrograph of the unicellular coccolithophore, Gephyrocapsa oceanica

While Cyanobacteria have been traditionally included among the Algae, recent works usually exclude them due to large differences such as the lack of membrane-bound organelles, the presence of a single circular chromosome, the presence of peptidoglycan in the cell walls, and ribosomes different in size and content from those of the Eukaryotes.  Rather than in chloroplasts, they conduct photosynthesis on specialized infolded cytoplasmic membranes called thylakoid membranes. Therefore, they differ significantly from the Algae despite occupying similar ecological niches.

 

By modern definitions Algae are Eukaryotes and conduct photosynthesis within membrane-bound organelles called chloroplasts. Chloroplasts contain circular DNA and are similar in structure to Cyanobacteria, presumably representing reduced cyanobacterial endosymbionts. The exact nature of the chloroplasts is different among the different lines of Algae, reflecting different endosymbiotic events. The table below describes the composition of the three major groups of Algae. Their lineage relationships are shown in the figure in the upper right. Many of these groups contain some members that are no longer photosynthetic. Some retain plastids, but not chloroplasts, while others have lost plastids entirely.

 

Phylogeny based on plastid, not nucleocytoplasmic genealogy:

phylogeny

Super group affiliation

Members

Endosymbiont

Summary

Primoplantae/
Archaeplastida

Chlorophyta

Rhodophyta

Glaucophyta

Cyanobacteria

These Algae have primary chloroplasts, i.e. the chloroplasts are surrounded by two membranes and probably developed through a single endosymbiotic event. The chloroplasts of Red Algae have chlorophylls a and d (often), and phycobilins, while those of Green Algae have chloroplasts with chlorophyll a and b. Higher plants are pigmented similarly to Green Algae and probably developed from them, and thus Chlorophyta is a sister taxon to the plants; sometimes they are grouped as Viridiplantae.

Excavata and Rhizaria

Chlorarachniophytes

Euglenids

Green Algae

These groups have green chloroplasts containing chlorophylls a and b.  Their chloroplasts are surrounded by four and three membranes, respectively, and were probably retained from ingested Green Algae.

Chlorarachniophytes, which belong to the phylum Cercozoa, contain a small nucleomorph, which is a relict of the algae's nucleus.

Euglenids, which belong to the phylum Euglenozoa, live primarily in freshwater and have chloroplasts with only three membranes.  It has been suggested that the endosymbiotic Green Algae were acquired through myzocytosis rather than phagocytosis. 

Chromista and Alveolata

Heterokonts

Haptophyta

Cryptomonads

Dinoflagellates

Red Algae

These groups have chloroplasts containing chlorophylls a and c, and phycobilins. The latter chlorophyll type is not known from any prokaryotes or primary chloroplasts, but genetic similarities with the Red Algae suggest a relationship there.

In the first three of these groups (Chromista), the chloroplast has four membranes, retaining a nucleomorph in Cryptomonads, and they likely share a common pigmented ancestor,  although other evidence casts doubt on whether the Heterokonts, Haptophyta, and Cryptomonads are in fact more closely related to each other than to other groups.

The typical dinoflagellate chloroplast has three membranes, but there is considerable diversity in chloroplasts within the group, and it appears there were a number of endosymbiotic events.  The apicomplexa, a group of closely related parasites, also have plastids called apicoplasts.  Apicoplasts are not photosynthetic but appear to have a common origin with Dinoflagellate chloroplasts. 

 

 

W.H.Harvey (1811—1866) was the first to divide the Algae into four divisions based on their pigmentation. This is the first use of a biochemical criterion in plant systematics. Harvey's four divisions are: Red Algae (Rhodophyta), Brown Algae (Heteromontophyta), Green Algae (Chlorophyta) and Diatomaceae.

 

Relationship to Higher Plants

The first plants on earth evolved from shallow freshwater algae much like Chara some 400 million years ago. These probably had an isomorphic alternation of generations and were probably filamentous. Fossils of isolated land plant spores suggest land plants may have been around as long as 475 million years ago.

Morphology

 

A range of algal morphologies are exhibited, and convergence of features in unrelated groups is common. The only groups to exhibit three dimensional multicellular thalli are the reds and browns, and some chlorophytes.  Apical growth is constrained to subsets of these groups: the florideophyte reds, various browns, and the charophytes.  The form of charophytes is quite different to those of reds and browns, because have distinct nodes, separated by internode 'stems'; whorls of branches reminiscent of the horsetails occur at the nodes.  Conceptacles are another polyphyletic trait; they appear in the coralline algae and the Hildenbrandiales, as well as the browns.

 

Most of the simpler algae are unicellular flagellates or amoeboids, but colonial and non-motile forms have developed independently among several of the groups. Some of the more common organizational levels, more than one of which may occur in the life cycle of a species, are

  • Colonial: small, regular groups of motile cells
  • Capsoid: individual non-motile cells embedded in mucilage
  • Coccoid: individual non-motile cells with cell walls
  • Palmelloid: non-motile cells embedded in mucilage
  • Filamentous: a string of non-motile cells connected together, sometimes branching
  • Parenchymatous: cells forming a thallus with partial differentiation of tissues

kelp forest exhibit

The kelp forest exhibit at the Monterey Bay Aquarium.  A three-dimensional, multicellular thallus

 

In three lines even higher levels of organization have been reached, with full tissue differentiation. These are the brown algae,—some of which may reach 50 m in length (kelps)—the red algae, and the green algae.  The most complex forms are found among the green algae, in a lineage that eventually led to the higher land plants. The point where these non-algal plants begin and algae stop is usually taken to be the presence of reproductive organs with protective cell layers, a characteristic not found in the other alga groups.

Symbiotic Algae

 

Some species of algae form symbiotic relationships with other organisms. In these symbioses, the algae supply photosynthates (organic substances) to the host organism providing protection to the algal cells. The host organism derives some or all of its energy requirements from the algae. Examples are as follows.

 

Lichens

 

rock lichens in ireland

Rock lichens in Ireland

Lichens are defined by the International Association for Lichenology to be "an association of a fungus and a photosynthetic symbiont resulting in a stable vegetative body having a specific structure."  The fungi, or mycobionts, are from the Ascomycota with a few from the Basidiomycota. They are not found alone in nature but when they began to associate is not known.  One mycobiont associates with the same phycobiont species, rarely two, from the Green Algae; except that alternatively the mycobiont may associate with the same species of Cyanobacteria (hence "photobiont" is the more accurate term). A photobiont may be associated with many specific mycobionts or live independently; accordingly, lichens are named and classified as fungal species.  The association is termed a morphogenesis because the lichen has a form and capabilities not possessed by the symbiont species alone (they can be experimentally isolated). It is possible that the photobiont triggers otherwise latent genes in the mycobiont.

 

Coral reefs

 

Coral reefs are accumulated from the calcareous exoskeletons of marine invertebrates of the Scleractinia order; i.e., the Stony Corals. As animals they metabolize sugar and oxygen to obtain energy for their cell-building processes, including secretion of the exoskeleton, with water and carbon dioxide as byproducts. As the reef is the result of a favorable equilibrium between construction by the corals and destruction by marine erosion, the rate at which metabolism can proceed determines the growth or deterioration of the reef.

floridian coral reef

Floridian coral reef

 

Algae of the Dinoflagellate phylum are often endosymbionts in the cells of marine invertebrates, where they accelerate host-cell metabolism by generating immediately available sugar and oxygen through photosynthesis using incident light and the carbon dioxide produced in the host. Endosymbiont algae in the Stony Corals are described by the term zooxanthellae, with the host Stony Corals called on that account hermatypic corals, which although not a taxon are not in healthy condition without their endosymbionts. Zooxanthellae belong almost entirely to the genus Symbiodinium.  The loss of Symbiodinium from the host is known as coral bleaching, a condition unless corrected leading to the deterioration and loss of the reef.

 

Life-Cycle

Sea sponges

 

Green Algae live close to the surface of some sponges, for example, breadcrumb sponge (Halichondria panicea). The alga is thus protected from predators; the sponge is provided with oxygen and sugars which can account for 50 to 80% of sponge growth in some species.

 

Numbers

Rhodophyta, Chlorophyta and Heterokontophyta, the three main algal Phyla, have life-cycles which show tremendous variation with considerable complexity. In general there is an asexual phase where the seaweed's cells are diploid, a sexual phase where the cells are haploid followed by fusion of the male and female gametes. Asexual reproduction is advantageous in that it permits efficient population increases, but less variation is possible. Sexual reproduction allows more variation but is more costly because among other things. Often there is no strict alternation between the sporophyte and also because there is often an asexual phase, which could include the fragmentation of the thallus.

 

Distribution

The Algal Collection of the U.S. National Herbarium (located in the National Museum of Natural History) consists of approximately 320500 dried specimens, which, although not exhaustive (no exhaustive collection exists), gives an idea of the order of magnitude of the number of algal species (that number remains unknown).  Estimates vary widely. For example, according to one standard textbook, in the British Isles the UK Biodiversity Steering Group Report estimated there to be 20000 algal species in the UK. Another checklist reports only about 5000 species. Regarding the difference of about 15000 species, the text concludes: "It will require many detailed field surveys before it is possible to provide a reliable estimate of the total number of species ...."

 

Regional and group estimates have been made as well: 5000—5500 species of Red Algae worldwide, "some 1300 in Australian Seas," 400 seaweed species for the western coastline of South Africa, 669 marine species from California (U.S.A.), 642 in the check-list of Britain and Ireland, and so on, but lacking any scientific basis or reliable sources, these numbers have no more credibility than the British ones mentioned above. Most estimates also omit the microscopic Algae, such as the phytoplankta, entirely.

 

Locations

The topic of distribution of algal species has been fairly well studied since the founding of phytogeography in the mid-19th century AD.  Algae spread mainly by the dispersal of spores analogously to the dispersal of Plantae by seeds and spores. Spores are everywhere in all parts of the Earth: the waters fresh and marine, the atmosphere, free-floating and in precipitation or mixed with dust, the humus and in other organisms, such as humans. Whether a spore is to grow into an organism depends on the combination of the species and the environmental conditions.

 

The spores of fresh-water Algae are dispersed mainly by running water and wind, as well as by living carriers.  The bodies of water into which they are transported are chemically selective. Marine spores are spread by currents. Ocean water is temperature selective, resulting in phytogeographic zones, regions and provinces.

 

To some degree the distribution of Algae is subject to floristic discontinuities caused by geographical features, such as Antarctica, long distances of ocean or general land masses. It is therefore possible to identify species occurring by locality, such as "Pacific Algae" or "North Sea Algae". When they occur out of their localities, it is usually possible to hypothesize a transport mechanism, such as the hulls of ships. For example, Ulva reticulata and Ulva fasciata travelled from the mainland to Hawaii in this manner.

 

Mapping is possible for select species only: "there are many valid examples of confined distribution patterns."  For example, Clathromorphum is an arctic genus and is not mapped far south of there.  On the other hand, scientists regard the overall data as insufficient due to the "difficulties of undertaking such studies."

 

Uses

phytoplankton, Lake Chuzenji

Phytoplankton, Lake Chuzenji

Algae are prominent in bodies of water, common in terrestrial environments and are found in unusual environments, such as on snow and on ice. Seaweeds grow mostly in shallow marine waters, under 100 meters (330 ft); however some have been recorded to a depth of 360 meters (1,200 ft).

 

The various sorts of algae play significant roles in aquatic ecology. Microscopic forms that live suspended in the water column (phytoplankton) provide the food base for most marine food chains. In very high densities (algal blooms) these algae may discolor the water and outcompete, poison, or asphyxiate other life forms.

 

Algae are variously sensitive to different factors, which has made them useful as biological indicators in the Ballantine Scale and its modification.

 

Agar

 

Agar, an Algae derivative, has a number of commercial uses.

 

Alginates

 

Between 100,000 and 170,000 wet tons of Macrocystis are harvested annually in California for alginate extraction and abalone feed.

harvesting algae

Harvesting Algae

 

Energy source

 

To be competitive and independent from fluctuating support from (local) policy on the long run, biofuels should equal or beat the cost level of fossil fuels. Here, algae based fuels hold great promise, directly related to the potential to produce more biomass/ha-year than any other form of biomass. The break-even point for algae-based biofuels should be within reach in about ten years.

 

Fertilizer

 

For centuries seaweed has been used as a fertilizer; George Owen of Henllys writing in the 16th century referring to drift weed in South Wales:

This kind of ore they often gather and lay on great heapes, where it heteth and rotteth, and will have a strong and loathsome smell; when being so rotten they cast on the land, as they do their muck, and thereof springeth good corn, especially barley ... After spring-tydes or great rigs of the sea, they fetch it in sacks on horse backes, and carie the same three, four, or five miles, and cast it on the lande, which doth very much better the ground for corn and grass.

 

Today Algae are used by humans in many ways; for example, as fertilizers, soil conditioners and livestock feed.  Aquatic and microscopic species are cultured in clear tanks or ponds and are either harvested or used to treat effluents pumped through the ponds. Algaculture on a large scale is an important type of aquaculture in some places. Maerl is commonly used as a soil conditioner.

seaweed is used as a fertilizer

Seaweed is used as a fertilizer

 

Nutrition

 

Naturally growing seaweeds are an important source of food, especially in Asia. They provide many vitamins including: A, B1, B2, B6, niacin and C, and are rich in iodine, potassium, iron, magnesium and calcium.  In addition commercially cultivated microalgae, including both Algae and Cyanobacteria, are marketed as nutritional supplements, such as Spirulina, Chlorella and the Vitamin-C supplement, Dunaliella, high in beta-carotene.

seaweed gardens on inisheer

Seaweed gardens on Inisheer

 

dulse

Dulse, a food

Algae are national foods of many nations: China consumes more than 70 species, including fat choy, a cyanobacterium considered a vegetable; Japan, over 20 species; Ireland, dulse; Chile, cochayuyo.  Laver is used to make "laver bread" in the British Isles; in Korea, gim; in Japan, nori and aonori. It is also used along the west coast of North America from California to British Columbia, in Hawaii and by the Maori of New Zealand. Sea lettuce and badderlocks is a salad ingredient in Scotland, Ireland, Greenland and Iceland.

 

The oils from some Algae have high levels of unsaturated fatty acids. For example, Arachidonic acid is very high in Parietochloris incisa, where it reaches up to 47% of the triglyceride pool.  Some varieties of Algae favored by vegetarianism and veganism contain the long-chain, essential omega-3 fatty acids, Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA), in addition to vitamin B12. The vitamin B12 in algae is not biologically active. Fish oil contains the omega-3 fatty acids, but the original source is algae, which are eaten by marine life such as copepods and are passed up the food chain.

 

Source of this Article

Pollution control

  • Sewage can be treated with algae, reducing the need for greater amounts of toxic chemicals than are already used.
  • Algae can be used to capture fertilizers in runoff from farms. When subsequently harvested, the enriched algae itself can be used as fertilizer.
  • Algae Bioreactors are used by some power plants to reduce CO2 emissions.

 

 

Pigments

 

The natural pigments produced by algae can be used as an alternative to chemical dyes and coloring agents.

 

Stabilizing substances

 

Carrageenan, from the red alga Chondrus crispus, is used as a stabilizer in milk products.

 

Web Analytics